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Abstract

We continue the analysis of models of spontaneous wavefunction collapse with
stochastic dynamics driven by non-white Gaussian noise. We specialize to
a model in which a classical ‘noise’ field, with specified autocorrelator, is
coupled to a local nonrelativistic particle density. We derive general results in
this model for the rates of density matrix diagonalization and of state vector
reduction, and show that (in the absence of decoherence) both processes are
governed by essentially the same rate parameters. As an alternative route to our
reduction results, we also derive the Fokker–Planck equations that correspond
to the initial stochastic Schrödinger equation. For specific models of the noise
autocorrelator, including ones motivated by the structure of thermal Green’s
functions, we discuss the qualitative and quantitative dependence on model
parameters, with particular emphasis on possible cosmological sources of the
noise field.

PACS numbers: 03.65.Ca, 03.65.Yz

1. Introduction

In an earlier paper [1]5, hereafter referred to as (I), we presented a detailed analysis of
stochastic models for state vector collapse driven by Gaussian non-white noise. In particular,
we showed that a perturbation expansion in the noise strength parameter

√
γ permits the

explicit calculation of consequences of the model, in parallel with standard results obtained by
the Itô calculus in the white noise case. In (I) the noise couplings were introduced in generic
form, subject to the assumption that the noise correlator has a positive definite structure in

5 This paper gives extensive references to the stochastic collapse literature, and in particular to prior discussions of
models with non-white noise.
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the large time limit. As we shall see, this positivity assumption is overly restrictive, and
does not apply to the physically interesting case of thermal noise, where the spatial Fourier
transform of the noise correlator is oscillatory in time. Our aim in this paper is to specialize
the discussion of (I) to the physically interesting case of a particle density-coupled classical
noise field, and then within the context of this model, to give a generalized analysis of density
matrix diagonalization, state vector reduction and constraints on model parameters. We then
turn to the question of whether the noise field postulated in stochastic reduction models can
be realized as a cosmological field. (For a section-by-section brief summary of the contents
of this paper, the reader should turn to the summary and discussion given in section 7.)

Our starting point in (I) was a diffusion process for the wavefunction in Hilbert space
having the form (with h̄ = 1, with the constant complex coupling factor ξ introduced in (I) set
equal to 1, and with the state vector denoted here by |ψ〉),

d|ψ(t)〉
dt

=
[
−iH +

√
γ

N∑
i=1

Aiwi(t) + O

]
|ψ(t)〉. (1)

Here H is the standard quantum Hamiltonian of the system, Ai are commuting self-adjoint
operators, γ is a positive coupling constant and O is a linear operator yet to be defined. The
noises wi(t) are real Gaussian random processes, whose mean and correlation functions are,
respectively,

E[wi(t)] = 0, E[wi(t1)wj (t2)] = Dij (t1, t2). (2)

We will now specialize the discussion to the case in which the index i is the spatial
coordinate �x, and the operator Ai is a particle density M(�x), which, for a many-body system
composed of distinguishable particles with couplings mi and coordinate operators �qi , is given
by

M(�x) =
∑

i

miδ
3(�x − �qi). (3)

(We have chosen a notation appropriate to the case in which the density M is a mass density,
but (3) also describes other forms of coupling to particle densities, such as to the baryon
number, lepton number or isospin densities, with mi the appropriate coupling constants.) An
important property of the density operator of (3) is that when integrated over space it reduces
to a c-number that commutes with all operators,∫

d3x M(�x) =
∫

d3x
∑

i

miδ
3(�x − �qi) =

∑
i

mi. (4)

Hence a noise coupling to the density operator can be permitted to have a nonzero expectation,
since this will only contribute a constant term to the effective Hamiltonian on the right of (1).
So we will assume that, corresponding to (3), the noises wi(t) of (I) form a classical noise
field, which we shall denote by φ(�x, t), with mean and autocorrelation

E[φ(�x, t)] = φ0, E[(φ(�x, t1) − φ0))(φ(�y, t2) − φ0)] = D(�x − �y, t1 − t2). (5)

Here, in assuming a constant expectation φ0 and in writing the arguments of D, we have built in
an assumption of space and time translation invariance; we shall also assume spatial inversion
invariance, so that D(�x, t) = D(−�x, t). Thus, with this specialization of the noise structure
of (I), the diffusion process in Hilbert space of (1) becomes

d|ψ(t)〉
dt

=
[
−iH +

√
γ

∫
d3x M(�x)φ(�x, t) + O

]
|ψ(t)〉. (6)

In most of what follows, we will neglect the Hamiltonian term in (6), focusing on effects that
arise from the action of the stochastic term.
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Because it uses real-valued noise, (6) does not preserve the norm of the wavefunction,
and this is where the operator O enters. In (I), through detailed calculations that we shall not
repeat, we show that O is fixed by the requirements of (i) state vector normalization, and (ii)
a linear evolution equation for the density matrix

ρ(t) = E[|ψ(t)〉〈ψ(t)|], (7)

which guarantees that superluminal signaling cannot occur. Relation (7) guarantees also the
positivity of ρ(t) throughout time. Determining the structure of O leads to three equations from
(I), which are exact to order γ , and which when specialized to the case of a density-coupled
noise, form the starting point for our analysis here.

The first of the needed equations describes the density matrix time evolution, as given by
(53) of (I),

d

dt
ρ(t) = −i[H, ρ(t)] + γ

∫ t

0
ds

∫
d3x

∫
d3y[M(�x)ρ(t)M(�y, s − t)

+ M(�y, s − t)ρ(t)M(�x) − M(�x)M(�y, s − t)ρ(t)

− ρ(t)M(�y, s − t)M(�x)]D(�x − �y, t − s), (8)

with (see (47) of (I))

M(�y, s − t) = eiH(s−t)M(�y) e−iH(s−t). (9)

When H = 0 this simplifies to read (see (19) of (I))

d

dt
ρ(t) = γ

∫
d3x

∫
d3y[M(�x)ρ(t)M(�y) + M(�y)ρ(t)M(�x)

−M(�x)M(�y)ρ(t) − ρ(t)M(�y)M(�x)]F(�x − �y, t), (10)

where we have defined

F(�x − �y, t) =
∫ t

0
ds D(�x − �y, t − s). (11)

To state the second equation, let us define the expectation 〈O〉t = 〈ψ(t)|O|ψ(t)〉 for any
operator O. Then when H = 0 the time evolution of the stochastic expectation of the variance
VA(t) = 〈A2〉t − 〈A〉2

t of any operator A that commutes with the mass density for all �x, given
by (23) and (24) of (I), becomes

d

dt
E[VA(t)] = −8γ

∫
d3x

∫
d3yE[〈(M(�x) − 〈M(�x)〉t )A〉t 〈(M(�y)

−〈M(�y)〉t )A〉t ]F(�x − �y, t). (12)

The final equation that we need describes the time evolution of the state vector |ψ(t)〉, as
specified in (40), (51) and (52) of (I), which combined become

d|ψ(t)〉
dt

=
[
−iH +

√
γ

∫
d3x[M(�x) − 〈M(�x)〉t ]φ(�x, t) + γ (B − 〈B〉t )

]
|ψ(t)〉, (13)

with the self-adjoint operator B given by

B = −2
∫

d3x

∫
d3y F(�x − �y, t)[M(�x) − 〈M(�x)〉t ][M(�y) − 〈M(�y)〉t ]. (14)

The alternative form of this equation given in (35) and (37) of (I) differs only by a change of
measure for the noise, and makes identical physical predictions.

As is easily checked, an important consequence of the fact that the spatial integral of M(�x)

is a c-number (cf (4) is that the noise-field expectation φ0 makes no contribution to the order
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√
γ term in (13), and that a space-independent constant in F(�x − �y, t) makes no contribution

to (12), (10) and (14). That is, we can replace F(�x − �y, t) by the subtracted function

F(�x − �y, t) − ξ(t), (15)

for an arbitrary function ξ(t), with no effect on the equations; only the nonzero spatial Fourier
components of F(�x − �y, t) are significant for our analysis. In particular, for ξ(t) = F(�0, t),
this invariance implies that we are free to replace F(�x − �y, t) by the subtracted function
F(�x − �y, t) − F(�0, t), which has a spatial Fourier transform with improved convergence at
small wave numbers.

There has recently been a spirited debate [2] over whether stochastic reduction models
can be made relativistically invariant. We remark in this context that the noise coupling of (1)
can be obtained in a number of ways as the nonrelativistic limit of relativistically invariant,
anti-self-adjoint coupling actions involving scalar, vector or tensor fields. (An anti-self-adjoint
action is required to give a real noise term in the Schrödinger equation; we will not attempt
here a fundamental justification of this phenomenologically-motivated choice of Hermiticity
structure.) When the noise coupling is introduced as the nonrelativistic limit of a relativistic
action, relativistic invariance of the stochastic reduction model is broken not by the noise
coupling, but by the assumed autocorrelator of the noise field φ(�x, t). For example, if the
noise field has a cosmological origin, its autocorrelator might be expected to refer preferentially
to either the Lorentz frame in which the cosmological background radiation is isotropic, or to
the galactic rest frame. A topic for future work will be to investigate whether an effective anti-
self-adjoint coupling action can arise naturally in a non-equilibrium cosmology, or requires
an explicitly non-unitary pre-quantum dynamics.

2. Density matrix diagonalization

We begin our analysis by considering the consequences of (10) for coordinate off-diagonal
matrix elements of the density matrix, when the Hamiltonian evolution is neglected. Taking
the matrix element of (10) between states

〈{�r1
�

}∣∣ and
∣∣{�r2

�

}〉
, we get a differential equation for

the time dependence of the matrix element of ρ, which can be immediately integrated to give〈{�r1
�

}∣∣ρ(t)
∣∣{�r2

�

}〉 = e−	(t)
〈{�r1

�

}∣∣ρ(0)
∣∣{�r2

�

}〉
, (16)

with the integrated rate 	(t) given by

	(t) = γ

∫
d3x

∫
d3y

∫ t

0
dsF (�x − �y, s)[m1(�x) − m2(�x)][m1(�y) − m2(�y)], (17)

where m1,2 are the eigenvalues of the operator M(�x) when acting on the respective states∣∣{�r1,2
�

}〉
,

m1(�x) =
∑

i

miδ
3(�x − �r1

i

)
, m2(�x) =

∑
i

miδ
3(�x − �r2

i

)
. (18)

Substituting (18) into (17) and carrying out the �x and �y integrals using the delta functions, we
obtain

	(t) = γ

∫ t

0
ds
∑

i

∑
j

mimj

[
F
(�r1

i − �r1
j , s
)

+ F
(�r2

i − �r2
j , s
)

−F
(�r1

i − �r2
j , s
)− F

(�r2
i − �r1

j , s
)]

. (19)

We now review a number of useful features of this formula (many of which, in a slightly
different notation, are familiar from the stochastic reduction literature). First of all, as already
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pointed out in section 1, (19) is unchanged when we replace F(�r, s) by the subtracted function
F(�r, s) − F(�0, s). Second, suppose that �r1

I = �r2
I = �rI for some particle with index I. Then

the contribution of this particle to the double sum in (19) is

2m2
I [F(�0, s) − F(�0, s)] + 2mI

∑
j �=I

mj

[
F
(�rI − �r1

j , s
)

+ F
(�rI − �r2

j , s
)

−F
(�rI − �r2

j , s
)− F

(�rI − �r1
j , s
)] = 0. (20)

So only particles that have different coordinates in the groups 1 and 2 contribute to the sum.
Third, suppose that for large separations �r , relative to some correlation scale rC , the

function F(�r, s) asymptotically approaches a constant (which can be zero or nonzero). Then
if there are two particles I, J such that �r1,2

I −�r1,2
J are all large enough relative to rC to be in the

asymptotic regime for F, the cross terms in the double sum linking these two particles do not
contribute. This means that if the particles form a set of K widely spaced bunches on the scale
of rC , with the particles of group 2 displaced with respect to those of group 1 by distances of
order rC , the formula for 	(t) splits into a sum

	(t) =
K∑

k=1

	k(t), (21)

with 	k(t) computed entirely within the kth bunch.
Fourth, let us take group 1 to be a collection of particles that are very closely spaced on

the scale of rC , and suppose that the particles of group 2 are all displaced by a common vector
�R with respect to those of group 1. In this case, 	(t) is approximated by the formula

	(t) � 2γ

∫ t

0
ds

(∑
i

mi

)2

[F(�0, s) − F( �R, s)], (22)

which is the formula that would be obtained if there were only one particle of mass
∑

i mi

at the center of mass of the group. The above formulae display the amplification mechanism
typical of collapse models: when particles interact to form a macro-object, the collapses on
the single particles add up in such a way that the center of mass of the object collapses each
time a single particle does. This is the reason why these models can account both for the
quantum properties of microscopic systems and for the classical properties of macroscopic
objects.

Fifth, let us again take group 1 to be a collection of particles that are very closely spaced
on the scale of rC , but now suppose that the particles of group 2 are displaced by random
amounts, with an average magnitude of displacement R with respect to those of group 1. When
the function F(�r, s) only depends on the magnitude |�r| of the displacement vector, so that
F(�r, s) = F [|�r|, s] then 	(t) is approximated by the formula

	(t) � γ

∫ t

0
ds

(∑
i

mi

)2 [
F(0, s) +

〈〈
F
(∣∣�r2

i − �r2
j

∣∣, s)〉〉
N

− 2
〈〈
F
(∣∣�r1

i − �r2
j

∣∣, s)〉〉
N

]
, (23)

where 〈〈· · ·〉〉N denotes the average over the ensemble of particles; when R > rC (23) is further
approximated by

	(t) � γ

∫ t

0
ds

(∑
i

mi

)2

[F(0, s) − F(R, s)], (24)

which is one half of the 	(t) given by the center-of-mass formula (22) for the corresponding
magnitude of R.

5
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Finally, in many cases of interest F(�x − �y, s) can be written as a sum or integral over
factors referring to �x and �y separately,

F(�x − �y, s) =
∑

α

F(α, s)f (α, �x)f (α, �y), (25)

with F an appropriate weighting function, and α a shorthand for any combination of discrete
and continuous variables. Substitution of (25) into (17) gives

	(t) = γ

∫ t

0
ds
∑

α

F(α, s)g
(
α,
{�r1

�

}
,
{�r2

�

})2
, (26)

with

g
(
α,
{�r1

�

}
,
{�r2

�

}) =
∫

d3x f (α, �x)[m1(�x) − m2(�x)] =
∑

i

mi

[
f
(
α, �r1

i

)− f
(
α, �r2

i

)]
. (27)

3. State vector reduction

We proceed next to apply (12) to the problem of reduction of a state vector constructed as a
superposition of position eigenstates

∣∣{�rj

�

}〉
, j = 1, . . . , N . Our first step is to rewrite (12) in

a more useful form by setting A = B + C, with B and C operators that commute with each
other and with the mass density, and subtracting off (12) as written for B and C alone, which
gives
d

dt
E[〈BC〉t − 〈B〉t 〈C〉t ] = −8γ

∫
d3x

∫
d3yE[〈(M(�x)

−〈M(�x)〉t )B〉t 〈(M(�y) − 〈M(�y)〉t )C〉t ]F(�x − �y, t). (28)

Using the fact that B and C can be arbitrary operator functions of the particle coordinate
operators, by making the specific choices B = ∏

i δ
3(�ui − �qi) and C = ∏

i δ
3( �wi − �qi), we

get

d

dt
E

[(∏
i

δ3( �wi − �ui)

)
|ψ({ �w�})|2 − |ψ({�u�})|2|ψ({ �w�})|2

]

= −8γ

∫
d3xd3yE

⎡
⎣|ψ({�u�})|2|ψ({ �w�})|2

∑
j

mj [δ3(�x − �uj )

− |ψ̂j (�x)|2]
∑

k

mk[δ3(�y − �wk) − |ψ̂k(�y)|2]

]
F(�x − �y, t), (29)

where we have introduced the definition

|ψ̂j (�zj )|2 =
⎛
⎝∏

i �=j

∫
d3zi

⎞
⎠ |ψ({�z�})|2,

∫
d3zj |ψ̂(�zj )|2 = 1. (30)

Let us now specialize (29) to the case of a wavefunction which is the superposition of N
distinct localized groups of particles, by writing

ψ({�z�}) = 〈{�z�}|ψ(t)〉 =
N∑

J=1

αJ

∏
�

δ3(�z� − �rJ
�

)1/2
,

(31)

|ψ({�z�})|2 =
N∑

J=1

pJ

∏
�

δ3(�z� − �rJ
�

)
,

6
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with pJ = |αJ |2 and with normalization of the wavefunction implying that
∑

J pJ = 1. (By
the square root of a delta function, we mean a Gaussian wave packet which is sharply localized,
with a modulus squared that integrates to unity.) Substituting (31) into (29), and integrating
in d{ �w�} around

{�rL
�

}
and in d{�u�} around

{�rM
�

}
, we get an equation for the time evolution

of the occupation probabilities pJ of the corresponding states
∏

� δ3
(�z� − �rJ

�

)1/2
with label J

that appear in the superposition,

d

dt
E[δMLpM − pMpL] = −8γ E

⎡
⎣pMpL

∑
j

∑
k

mjmk

⎧⎨
⎩F
(�rL

j − �rM
k , t

)

+
∑
R,S

pRpSF
(�rR

j − �rS
k , t
)−
∑
R

pRF
(�rR

j − �rM
k , t

)−
∑

S

pSF
(�rL

j − �rS
k , t
)⎫⎬⎭
⎤
⎦ .

(32)

Specializing this further to the two group case with N = 2, taking M = L = 1 and doing
some algebraic rearrangement using the fact that the sum of the probabilities is p1 + p2 = 1,
we get

d

dt
E[p1p2] = −8γ E

[
p2

1p
2
2

]∑
j

∑
k

mjmk

{
F
(�r1

j − �r1
k , t
)

+ F
(�r2

j − �r2
k , t
)− F

(�r1
j − �r2

k , t
)− F

(�r2
j − �r1

k , t
)}

. (33)

We can now use (33) to derive upper and lower bounds to the reduction rate, as follows.
To obtain an upper bound, we use the inequality

E
[
p2

1p
2
2

]
� E[p1p2]2, (34)

and the assumption that the integrand of 	(t) in (19) is positive for all s, to rewrite (33) as

d

dt
E[p1p2] � −8γ E[p1p2]2

∑
j

∑
k

mjmk

{
F
(�r1

j − �r1
k , t
)

+ F
(�r2

j − �r2
k , t
)− F

(�r1
j − �r2

k , t
)− F

(�r2
j − �r1

k , t
)}

, (35)

giving a differential inequality that can be integrated to give an upper bound on the reduction
rate

E[p1(t)p2(t)] � E[p1(0)p2(0)]

1 + 8	(t)
. (36)

To get a lower bound, we note that since the probabilities p1 and p2 obey p1 + p2 = 1, we
have p1p2 = p1(1 − p1) � 1/4, and so

E
[
p2

1p
2
2

]
� E[p1p2]/4. (37)

Again assuming that the integrand of (19) is positive for all s, this gives a differential inequality
that can be integrated to give the lower bound

E[p1(t)p2(t)] � E[p1(0)p2(0)] exp[−2	(t)]. (38)

Thus we see that in our model of a Schrödinger equation modified solely by a real noise
process, the upper and lower bounds on the reduction rate involve (under the uniform positivity
assumption) the same integrated rate function 	(t) as appears in the decay of the off-diagonal
density matrix element

〈{�r1
�

}|ρ(t)|{�r2
�

}〉
. Of course, in realistic applications, the rate for density

matrix diagonalization is expected to receive much larger contributions from decoherence
processes, which can be modeled by imaginary noise terms in the Schrödinger equation that

7
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do not contribute to state vector reduction. Although the upper and lower bounds are governed
by the same integrated rate function, they have very different functional dependencies: the
upper bound depends on the inverse of 	(t), whereas the lower bound is a negative exponential
in 	(t). Solvable models [3, 4] and appendix D show that in fact the actual decay of the variance
is exponential, rather than power law, indicating that the lower bound of (38) gives the better
estimate6.

In the general N group case, although we have not derived rigorous bounds, we can get
estimates similar to the two-group case by setting M = L in (32), giving

d

dt
E[pL(1 − pL)] = −8γ E

⎡
⎣p2

L

∑
j

∑
k

mjmk

{
F
(�rL

j − �rL
k , t
)

+
∑
R,S

pRpSF
(�rR

j − �rS
k , t
)

−
∑
R

pRF
(�rR

j − �rL
k , t
)−

∑
S

pSF
(�rL

j − �rS
k , t
)⎫⎬⎭
⎤
⎦ . (39)

Suppose now that the stochastic process brings the probabilities close to a corner of their
domain, where for some M �= L the probability pM is close to unity, and thus all the other
probabilities are small. The right-hand side of (39) then contains terms of second degree in
small quantities, given by selecting the terms with R = M and S = M in the sums, plus
remaining terms that are third degree in small quantities. The second-degree terms contribute

d

dt
E[pL] � −8γ E

[
p2

L

]∑
j

∑
k

mjmk

{
F
(�rL

j − �rL
k , t
)

+ F
(�rM

j − �rM
k , t

)
−F

(�rM
j − �rL

k , t
)− F

(�rL
j − �rM

k , t
)}

, (40)

which has a structure similar to (33) for the two-group case. Using the inequality

E
[
p2

L

]
� E[pL]2, (41)

defining 	LM(t) by

	LM(t) = γ

∫ t

0
ds
∑

j

∑
k

mjmk

[
F
(�rL

j − �rL
k , s
)

+ F
(�rM

j − �rM
k , s

)
−F

(�rL
j − �rM

k , s
)− F

(�rM
j − �rL

k , s
)]

, (42)

and assuming positivity of the integrand of (42), we get a differential inequality that can be
integrated to give an upper bound on the decay rate,

E[pL(t)] � E[pL(0)]

1 + 8	LM(t)
. (43)

Similarly, from (40) we can also get a lower bound on the decay rate,

E[pL(t)] � E[pL(0)] exp[−2	LM(t)]. (44)

6 In the example calculated in appendix D, the actual variance decay is ∼e−	(t). A simple example shows how
an exponential decay of the variance can agree with the inequalities used to get the upper and lower bounds.
If E[p1(t)p2(t)] � E[p1(0)p2(0)] exp(−	(t)), then (d/dt)E[p1(t)p2(t)] = −	′(t)E[p1(t)p2(t)], whereas (33)
implies that (d/dt)E[p1(t)p2(t)] = −8	′(t)E[p2

1(t)p2
2(t)], and so we must have E[p1(t)p(t)] = 8E[p2

1p2
2]. Suppose

now that p1(t)p2(t) = 0 with probability 1 − exp(−	(t)), and p1(t)p2(t) = 1/8 with probability exp(−	(t)). We
then have E[p1(t)p2(t)] = 8E[p2

1(t)p2
2(t)] = (1/8) exp(−	(t)). However, E[p1(t)p2(t)]2 = (1/64) exp(−2	(t)),

which for large 	(t) is much smaller than E[p2
1(t)p2

2(t)] = (1/64) exp(−	(t)), and so the inequality of (34), which
was used to get the upper bound, is far from being saturated, while by construction, the inequality of (37), which was
used to get the lower bound, is saturated.
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Thus, near the corner where pM � 1, the other pL decay to zero, with the slowest rate of
decrease corresponding to the smallest value of 	LM for L �= M .

To conclude this section, we note that when F(�x − �y, t) has the factorized form given in
(25), then (32) takes the form

d

dt
E[δMLpM − pMpL] = −8γ E

⎡
⎣pMpL

∑
α

F(α, t)
∑

j

mj

[
f
(
α, �rL

j

)−
∑
R

pRf
(
α, �rR

j

)]

×
∑

k

mk

[
f
(
α, �rM

k

)−
∑

S

pSf
(
α, �rS

k

)]]
, (45)

while (42) becomes

	LM(t) = γ

∫ t

0
ds
∑

α

F(α, t)

[∑
i

mi

(
f
(
α, �rL

i

)− f
(
α, �rM

i

))]2

= γ

∫ t

0
ds
∑

α

F(α, t)g
(
α,
{�rL

�

}
,
{�rM

�

})2
, (46)

and 	(t) = 	12(t) is the specialization of this formula to L = 1,M = 2.

4. The Fokker–Planck equation

As a complement to the methods used in the preceding sections, we derive the Fokker–Planck
equation for the non-white noise model, and use it to rederive (32). We again restrict ourselves
to the case when the Hamiltonian H is zero, which allows all equations to be diagonalized in
coordinate representation. Starting from (13) and substituting

|ψ(t)〉 =
N∑

L=1

αL

∣∣{�rL
�

}〉
, (47)

with
∣∣{�rL

�

}〉
sharply localized wave-packet states (cf (31)), we find that the coefficients αL

obey the equation of motion

d

dt
αL = αLXL, (48)

with XL given by

XL = √
γ
∑

i

mi

[
φ
(�rL

i , t
)−

∑
R

pRφ
(�rR

i , t
)]

− γ
∑

i

∑
j

2mimj

[
F
(�rL

i − �rL
j , t
)

+ 2
∑
R,S

pRpSF
(�rR

i − �rS
j , t
)

− 2
∑
R

pRF
(�rL

i − �rR
j , t
)−

∑
R

pRF
(�rR

i − �rR
j , t
)]

. (49)

Since XL is real, and pL = α∗
LαL, we correspondingly have

d

dt
pL = 2pLXL. (50)

9
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In order to derive the Fokker–Planck equation, we have to evaluate E[(d/dt)f ({pR})] for
an arbitrary function f of the set of probabilities {pR}, keeping terms through order γ . On
using the chain rule we have

E

[
d

dt
f ({pR})

]
= E

[∑
S

∂f ({pR})
∂pS

d

dt
pS

]
. (51)

On substituting (50) and (49) for (d/dt)pS , we encounter two types of terms. Terms of the
form

− γ
∑

S

E

[
∂f ({pR})

∂pS

AS

]
(52)

can be read off directly from the term proportional to −γ in XS , while terms of type

√
γ
∑
i,S,L

E

[
∂f ({pR})

∂pS

BSiLφ
(�rL

i , t
)]

(53)

are evaluated using the Furutsu–Novikov formula, which approximated by using pR(s) =
pR(t) + O(

√
γ ), takes the form

E

[
∂f ({pR})

∂pS

BSiLφ
(�rL

i , t
)] =

∑
j,S,T

F
(�rL

i − �rS
j , t
)
E

[
∂

∂pT

(
∂f ({pR})

∂pS

BSiL

)
∂pT

∂φ
(�rS

j , t
)
]

.

(54)

The needed derivative of pT can be read off directly from the
√

γ term in XT ; substituting this,
and doing much algebra, one finds that all first derivatives of f with respect to the probabilities
cancel exactly, leaving finally the compact expression

d

dt
E[f ({pR})] = 4γ

∑
M,T,i,j,Q,S

F
(�rR

i − �rS
j , t
)

×mimjE

[
∂2f ({pR})
∂pN∂pM

pT pM(δMQ − pQ)(δT S − pS)

]
. (55)

Introducing the probability density P({pR}, t), which includes as a factor the constraint
δ
(∑

L pL − 1
)

requiring that the probabilities sum to unity, we can also write the expectation
of (d/dt)f ({pR}) as

d

dt
E[f ({pR})] =

∏
L

∫
dpL

∂P ({pR})
∂t

f ({pR}). (56)

Comparison of this expression with (55), as rearranged by two integrations by parts (the surface
terms when any probability is 0 or 1 do not contribute; see below), one gets the Fokker–Planck
equation

∂P ({pR})
∂t

=
∑
M,T

∂2

∂pM∂pT

[AMT ({pR})P ({pR}, t)], (57)

with

AMT = 4γpMpT

∑
i,j,Q,S

F
(�rR

i − �rS
j , t
)
mimj(δMQ − pQ)(δT S − pS)

= 4γpMpT

∑
i,j,Q,S

mimjpQpS

[
F
(�rM

i − �rT
j , t
)

+ F
(�rQ

i − �rS
j , t
)

− F
(�rQ

i − �rT
j , t
)− F

(�rM
i − �rS

j , t
)]

. (58)
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This equation is a specific case of a general Fokker–Planck equation written by Pearle [5]
as the basis for a general class of objective reduction models. When F(�x − �y, t) takes the
factorized form of (25), AMT can be rewritten as

AMT = 4γpMpT

∑
α

F(α, t)φMφT , (59)

with

φM =
∑
i,Q

mipQ

[
f
(
α, �rM

i

)− f
(
α, �rQ

j

)]
. (60)

We see that in addition to vanishing when either pM = 0 or pT = 0, AMT vanishes when
either pM = 1 or pT = 1, because φM vanishes when pM = 1. This is why the integrations
by parts leading to the Fokker–Planck equation produce no surface terms, and also why the
Fokker–Planck equation of (57) satisfies the criteria that Pearle [5] formulated for getting a
Fokker–Planck equation that leads to state vector reduction with Born rule probabilities.

As an application of (55), if we substitute f ({pR}) = pL we find, since
∂2pL/(∂pN∂pM) = 0, that

d

dt
E[pL] = 0. (61)

Similarly, if we substitute f ({pR}) = δKLpL − pKpL, we find, using

∂2

∂pM∂pN

[δKLpL − pKpL] = −[δMKδNL + δMLδNK ], (62)

that (55) yields (32). More generally, (55) and the corresponding Fokker–Planck equation of
(57) allow one to calculate the time evolution of a general function f ({pR}) of the probabilities.

5. Noise effects: energy production and radiation by atoms

The noise coupling postulated in section 1 as the origin of state vector reduction has other
physical effects that serve to place upper bounds on the noise coupling strength γ . We focus
in this section in particular on energy production, and gamma radiation from atoms, which
place particularly stringent bounds on the model parameters.

5.1. Energy production

To calculate the mean rate of energy production, we have to evaluate (d/dt)Tr Hρ(t) =
Tr H(d/dt)ρ(t). From (8) we find, by repeated cyclic permutation under the trace, that

d

dt
Tr Hρ(t) = −γ

∫
d3x

∫
d3y

∫ t

0
dsD(�x − �y, t − s)Tr([[H,M(�x)],M(�y, s − t)]ρ(t)).

(63)

This equation is exact through order γ . We now make the Markovian approximation, of
assuming that we can ignore the ‘memory effect’ associated with the characteristic decay time
of the noise correlator D(�x − �y, t − s), by replacing M(�y, s − t) by M(�y, 0) = M(�y). For
white noise, where D(�x − �y, t − s) = G(�x − �y)δ(t − s), the Markovian approximation is
exact; for non-white thermal noises, it should be a good approximation when the energy at the
peak of the noise spectrum is much higher than the typical kinetic energies of the particles to
which the noise couples (see appendix A). With this approximation, (63) simplifies to
d

dt
Tr Hρ(t) = −γ

∫
d3x

∫
d3yF(�x − �y, t) Tr([[H,M(�x)],M(�y)]ρ(t)), (64)

where we have made use of definition (11).
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Let us now assume that H is the nonrelativistic Hamiltonian for a collection of particles
interacting through a general velocity-independent potential,

H =
∑

i

�p2
i

2Mi

+ V ({�q�}), (65)

while M(�x) has the form of (3) (in the mass-coupled noise case, mi = Mi) and F(�x − �y, t)

has the factor decomposition of (25). Then carrying out the �x and �y integrals, (64) becomes

d

dt
Tr Hρ(t) = −γ

∑
α

F(α, t)
∑
i,j

mimj Tr([[H, f (α, �qi)], f (α, �qj )]ρ(t)). (66)

The commutators appearing in (66) are easily evaluated,

[H, f (α, �qi)] =
⎡
⎣∑

j

�p2
j

2Mj

+ V ({�q�}), f (α, �qi)

⎤
⎦

=
[ �p2

i

2Mi

, f (α, �qi)

]

= −i

2Mi

[�pi · �∇�qi
f (α, �qi) + ∇�qi

f (α, �qi) · �pi

]
, (67)

giving

[[H, f (α, �qi)], f (α, �qj )] = −δij

1

Mi

[ �∇�qi
f (α, �qi)]

2. (68)

Substituting this into (66), we obtain finally

d

dt
Tr Hρ(t) = γ

∑
α

F(α, t)
∑

i

m2
i

Mi

Tr([ �∇�qi
f (α, �qi)]

2ρ(t)). (69)

A further simplification of this result can be achieved by using the Fourier transform
representation of F(�x − �y, t), which (recalling the assumed spatial inversion invariance) takes
the form

F(�x − �y, t) =
∫

d3k

(2π)3
cos(�k · (�x − �y))F̂ (�k, t)

=
∫

d3k

(2π)3
[cos(�k · �x) cos(�k · �y) + sin(�k · �x) sin(�k · �y)]F̂ (�k, t). (70)

This has the general structure of (25), with
∑

α corresponding to
∫

d3k(2π)−3∑2
n=1, with n a

discrete index distinguishing between the sine and cosine modes, that is, F(α, t) = F̂ (�k, t) for
both n = 0, 1, and f (�k, n = 0, �x) = cos(�k · �x) and f (�k, n = 1, �x) = sin(�k · �x). Substituting
(70) into (69) then gives

d

dt
Tr Hρ(t) = γ

∫
d3k

(2π)3
F̂ (�k, t)

∑
i

m2
i

Mi

Tr[�k2(cos2(�k · �qi) + sin2(�k · �qi))ρ(t)]

= γ

∫
d3k

(2π)3
�k2F̂ (�k, t)

∑
i

m2
i

Mi

, (71)

where in the final step we have used Tr ρ(t) = 1. Thus, in the Markovian approximation, we
get a simple formula for the energy production rate, expressed entirely in terms of the Fourier
transform of F(�x − �y, t). We see that the dynamics of the density matrix ρ(t) drops out of
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the final formula, as does the interaction potential in the Hamiltonian H, leaving a result that
is just the sum of contributions from the kinetic terms of the individual particles.

We give now several specific examples of the formula (71). First of all, in the standard
white noise CSL model, one has uncoupled space and time correlators of the product form

D(�x − �y, t − s) = G(�x − �y)δ(t − s), (72)

which taking account of the fact that
∫ t

0 ds δ(t − s) = 1/2, gives

F(�x − �y, t) = 1
2G(�x − �y). (73)

The spatial correlation function G(�x−�y) is the autoconvolution of the function g(�x) introduced
as the CSL smearing function,

G(�x − �y) =
∫

d3z g(�x − �z)g(�y − �z), g(�x) = (
√

2πrC)−3 e−�x2/(2r2
C), (74)

which, incidentally, gives an alternative form of factor decomposition for this model. We will
continue, however, to use the factor decomposition given by the Fourier transform, which is

G(�x − �y) =
∫

d3k

(2π)3
cos(�k · (�x − �y)) e−�k2r2

C , (75)

so that substituting (75) and (73) into (70) and writing k = |�k| we have

F̂ (�k, t) = 1
2 e−k2r2

c . (76)

Substituting this into (71) gives for the white noise CSL model

d

dt
Tr Hρ(t) = γ

4π2

∑
i

m2
i

Mi

∫ ∞

0
dk k4 e−k2r2

C

= 3γ

32π3/2r5
C

∑
i

m2
i

Mi

= 3λ

4m2
Nr2

C

∑
i

m2
i

Mi

, (77)

with mN the nucleon mass and λ = γm2
N

/(
8π3/2r3

C

)
the alternative form of the noise coupling

generally used in the CSL literature7. This result agrees with the standard answer for the
constant energy production rate in the CSL model.

Consider next a variant of the product correlator model, in which there is a cutoff in the
frequency spectrum, obtained by replacing γ δ(t − s) in (72) by

δγ (ω)(t − s) = 1

π

∫ ∞

0
dω γ (ω) cos(ω(t − s)). (78)

This replacement turns the original coupling γ into a frequency dependent coupling γ (ω),
with the specialization back to constant γ given by δγ (ω)≡γ = γ δ(t − s). In this case we find
that ∫ t

0
ds δγ (ω)(t − s) = 1

π

∫ ∞

0
γ
(u

t

) du

u
sin u, (79)

which approaches the constant γ (0)/2 as t → ∞, with the entire contribution in the infinite
time limit coming from the infrared region of the integral near ω = 0. Thus even with a

7 In the CSL model literature, what we here call γm2
N is termed γ , because the noise there is introduced as coupled

to the nucleon number density rather than the mass density. Also, we note that the dimensionality of γ is determined
by the dimensionality assigned to the field φ, and is not the same in our white noise and thermal model examples. In
the white noise CSL model, what we call γ has dimensionality mass−4 in microscopic units with h̄ = c = 1, whereas
in the thermal noise model discussed below, where φ is taken as a conventional dimension one boson field, γ has
dimensionality mass−2 in microscopic units.
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high-frequency cutoff, there is a constant energy production rate at large times in a model with
uncoupled space and time correlators. To avoid getting a constant energy production rate in
the product correlator model, one must include an infrared cutoff, by taking γ (0) = 0.

Finally, anticipating our discussion below of thermal noise, consider a correlator of the
general form

D(�x − �y, t − s) =
∫

d3k

(2π)3ωk

f (k) cos(�k · (�x − �y)) cos(ωk(t − s)), (80)

with ωk a wave number dependent angular frequency. Integrating to form F(�x − �y, t), we
have

F(�x − �y, t) =
∫ t

0
dsD(�x − �y, t − s) =

∫
d3k

(2π)3ω2
k

f (k) cos(�k · (�x − �y)) sin(ωkt), (81)

which identifies the Fourier transform as

F̂ (�k, t) = f (k)

ω2
k

sin(ωkt). (82)

Substituting this into (71) gives for the energy production rate

d

dt
Tr Hρ(t) = γ

∑
i

m2
i

Mi

∫
d3k

(2π)3

k2f (k)

ω2
k

sin(ωkt). (83)

Even when ωk ∝ k, this expression is strongly convergent in the infrared as a consequence
of the vanishing of phase space for small k values. Hence if f (k) is cut off sharply at large
k values, as expected in thermal models, it leads to a vanishing energy production rate at
large times by use of the Riemann–Lebesgue theorem. Integrating to find the total energy
production �Tr Hρ(t) ≡ Tr Hρ(t) − Tr Hρ(0), we find

�Tr Hρ(t) = γ

2π2

∑
i

m2
i

Mi

∫ ∞

0
dk

k4f (k)

ω3
k

[1 − cos(ωkt)], (84)

which as t → ∞ gives, again by an application of the Riemann–Lebesgue theorem,

�Tr Hρ(∞) = γ

2π2

∑
i

m2
i

Mi

∫ ∞

0
dk

k4f (k)

ω3
k

. (85)

5.2. Gamma radiation from atoms

An important constraint on noise model parameters is provided by the spontaneous emission
of gamma rays from atoms, a process first calculated for free electrons by Fu [6] and later
calculated for general atomic systems by Adler and Ramazanoǧlu [7]. Results were given in
the latter paper for a correlator of the form G(�x − �y)δγ (ω)(t − s). Remembering that the CSL
definition of γ is m2

N times the definition of γ used in this paper, and comparing (73) and (75)
with (80), we see that the results of [7] can be converted to apply to a correlator of the form
of (81) by the substitution

γ (ω)

m2
N

e−k2r2
C → γπ

f (k)

ωk

δ(ω − ωk). (86)

When ωk has the form ωk =
√

k2 + μ2, making this substitution into (44) of [7] gives as the
formula for the power radiation dP per unit photon energy dp from a hydrogen atom,

dP

dp
= 2

[
1 − 1

[1 + (pa0/2)2]2

]
γ e2(p2 − μ2)3/2f (

√
p2 − μ2)

3π2p
, (87)

with e2 � 1/137.04 and with a0 = 1/(e2melectron) = 0.529 × 10−8cm the Bohr radius.
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6. Models for the correlation function

We turn in this section to a discussion of specific models for the correlation function
D(�x − �y, t1 − t2) introduced in (5). We first briefly consider the standard CSL factorizable
correlation function with white noise, and its variant with a cutoff in the noise spectrum, which
has been the basis of most discussions to date of the phenomenology of objective reduction
models. However, one would in general expect the spatial and temporal structures of the
correlation function to be intertwined, and in particular, a correlation function arising from
fields with a particle interpretation will have the spatial and temporal correlations coupled by
a mass-shell constraint. This is the motivation for the models discussed in the remainder of
this section, which are based on a classical model extracted from the quantum thermal Green’s
function of a boson of mass μ.

6.1. The product correlator model

The product model for the correlation function was written in (72) through (79). With
a white noise spectrum, the standard CSL choice for the noise strength parameter is
m2

Nγ = 10−30 cm3 s−1, and the standard choice for the correlation length is rC ∼ 10−5 cm.
The white noise model with these parameter choices obeys all experimental upper bound
constraints, and readily explains measurements in which nout ∼ 1013 nucleons are displaced
by a distance of at least rC .

In [8], Adler gave a reanalysis of the upper and lower bounds on parameters in stochastic
reduction models. Under the assumption that latent image formation, in either photography
or etched track detectors, constitutes a measurement (rather than the measurement occurring
only through the subsequent development that reveals the latent image), he concluded that
the noise strength parameter γ should be larger than conventionally assumed in the CSL
white noise model, by a factor of 2 × 109±2. This however conflicts with bounds set by Fu
[6] and Adler and Ramazanoǧlu [7] on spontaneous 11 keV gamma radiation emission from
germanium, unless the white noise spectrum is cut off at energies below 11 keV by the spectral
weight γ (ω) appearing in (78). Such a cutoff would still allow sufficiently rapid state vector
reduction to account for observed measurement times, as already noted in the review of Bassi
and Ghirardi [9]. Thus, the product model for the correlation function, with a high-frequency
cutoff in the noise spectrum, is consistent both with all upper bounds, and with the assumption
that latent image formation constitutes a measurement signaling state vector reduction. Such
a correlation function might arise from a pre-quantum theory in which quantized fields are
not the primary entities, as in [10]. But as already noted, a product correlation function is not
expected to arise from quantum fields with a particle interpretation.

6.2. Thermal correlation function model

In this section, we shall motivate a model for the correlation function D(�x − �y, t1 − t2) by
considering the correlation function for a quantum field in a thermal state at temperature T.
Let φ(�x, t) be a scalar quantum field, with the mode decomposition

φ(�x, t) =
∫

d3k

[
1

2ωk(2π)3

]1/2

[a(�k) ei(�k·�x−ωkt) + a†(�k) e−i(�k·�x−ωkt)], (88)

where a(�k) and a†(�k) are the mode annihilation and creation operators, and where the mode
energy ωk is

ωk =
√

�k2 + μ2, (89)
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with μ the scalar field mass. We have, as before, set Planck’s constant h̄ equal to unity, and
also set the Boltzmann constant equal to unity, so that in a thermal state at temperature T the
expectations of products of creation and annihilation operators are given by

〈a(�k)a†(�k′)〉 = δ3(�k − �k′)[1 + N(�k)], 〈a†(�k)a(�k′)〉 = δ3(�k − �k′)N(�k), (90)

with the mean occupation number N(�k) given by

N(�k) = 1

e
ωk
T − 1

. (91)

From these equations we can now calculate the correlation function

〈φ(�x, t1)φ(�y, t2)〉 =
∫

d3k
1

2ωk(2π)3
[[1 + N(�k)] ei(�k·(�x−�y)−ωk(t1−t2))

+ N(�k) e−i(�k·(�x−�y)−ωk(t1−t2))], (92)

which can be written as the sum of a temperature-independent part �+(�x − �y, t1 − t2) and a
temperature-dependent part D(�x − �y, t1 − t2) as follows:

〈φ(�x, t1)φ(�y, t2)〉 = �+(�x − �y, t1 − t2) + D(�x − �y, t1 − t2),

�+(�x − �y, t1 − t2) =
∫

d3k
1

2ωk(2π)3
ei(�k·(�x−�y)−ωk(t1−t2)),

D(�x − �y, t1 − t2) =
∫

d3k
N(�k)

2ωk(2π)3
[ ei(�k·(�x−�y)−ωk(t1−t2)) + e−i(�k·(�x−�y)−ωk(t1−t2))]. (93)

In the zero temperature limit, D(�x, t) vanishes, and (93) reduces to the temperature-
independent piece �+, which is one of the standard relativistic quantum theory vacuum Green’s
functions arising directly from the non-commutativity of a(�k) and a†(�k), and is a complex
number for general arguments. The real-valued temperature-dependent piece D(�x−�y, t1−t2),
on the other hand, is invariant under the interchange �x, t1 ↔ �y, t2, and therefore can serve as
a model for the expectation of real, classical, commuting noise fields introduced in (5).

Since N(�k) and ωk are even in �k, writing e±i(�k·(�x−�y)) = cos(�k · (�x − �y))± i sin(�k · (�x − �y)),
the sine functions average to zero, and the formula for D(�x − �y, t1 − t2) simplifies to

D(�x − �y, t1 − t2) =
∫

d3k

(2π)3

N(�k)

ωk

cos(�k · (�x − �y)) cos(ωk(t1 − t2)), (94)

which has the form assumed in (80), with f (k) = N(�k) as given in (91) and with ωk the
energy–momentum relation given in (89). We shall slightly generalize the model specified
by (94) and (91), by introducing a thermodynamic chemical potential ζ into the occupation
number, which we thus write as

N(�k) = 1

e
ωk−ζ

T − 1
, (95)

which allows us to accommodate systems with general particle density [11]. For the case of
noise fields associated with particles having a standard energy–momentum dispersion relation,
(94), (89) and (95) constitute our basic model for the correlation function D(�x − �y, t1 − t2).
Corresponding to this model, the function F(�x − �y, t) defined in (11) is given by

F(�x − �y, t) =
∫ t

0
dsD(�x − �y, t − s) =

∫
d3k

(2π)3

N(�k)

ω2
k

cos(�k · (�x − �y)) sin(ωkt), (96)

and the integral appearing in the rate function 	(t) of (17) is given by

I (�x − �y, t) ≡
∫ t

0
dsF (�x − �y, s) =

∫
d3k

(2π)3

N(�k)

ω3
k

cos(�k · (�x − �y))[1 − cos(ωkt)]. (97)
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6.3. Dilute and nonrelativistic limits

Let us consider now the dilute limit of (94) and (95), obtained [11] by letting the chemical
potential ζ be large and negative, so that N(�k) becomes

N(�k) � e− ωk−ζ

T . (98)

We will be particularly interested in applying (98) to the nonrelativistic case T � μ, where
we can expand

ωk =
√

�k2 + μ2 � μ +
�k2

2μ
, (99)

so that N(�k) becomes

N(�k) = e−(μ−ζ )/T e−�k2/(2μT ). (100)

Where ωk appears as a denominator factor in (94), (96), and (97), it can be approximated by
μ, so these equations become respectively

D(�x, t) � e−(μ−ζ )/T

μ

∫
d3k

(2π)3
e−�k2/(2μT ) cos(�k · �x) cos

((
μ +

�k2

2μ

)
t

)
,

F (�x, t) � e−(μ−ζ )/T

μ2

∫
d3k

(2π)3
e−�k2/(2μT ) cos(�k · �x) sin

((
μ +

�k2

2μ

)
t

)
,

I (�x, t) � e−(μ−ζ )/T

μ3

∫
d3k

(2π)3
e−�k2/(2μT ) cos(�k · �x)

[
1 − cos

((
μ +

�k2

2μ

)
t

)]
. (101)

Carrying out the angular averaging over �k, remembering that it is the difference D(�0, t) −
D(�x, t) that enters into the reduction formalism, and writing R = |�x|, k = |�k|, (101) yields

D(�0, t) − D(�x, t) � e−(μ−ζ )/T

μ

∫ ∞

−∞

k2dk

(2π)2
e−k2/(2μT )

[
1 − sin(kR)

kR

]
cos

((
μ +

k2

2μ

)
t

)
,

F (�0, t) − F(�x, t) � e−(μ−ζ )/T

μ2

∫ ∞

−∞

k2dk

(2π)2
e−k2/(2μT )

[
1 − sin(kR)

kR

]
sin

((
μ +

k2

2μ

)
t

)
,

I (�0, t) − I (�x, t) � e−(μ−ζ )/T

μ3

∫ ∞

−∞

k2dk

(2π)2
e−k2/(2μT )

[
1 − sin(kR)

kR

]

×
[

1 − cos

((
μ +

k2

2μ

)
t

)]
. (102)

The integrals in (102) can all be evaluated from the formula∫ ∞

−∞
x2 dx exp(−αx2)

sin(xβ)

xβ
=

√
π

2α3/2
e−β2/(4α), (103)

with results that are summarized in appendix B. In particular, for large times, the formula for
I (�0, t) − I (�x, t) limits to

I (�0, t = ∞) − I (�x, t = ∞) � e−(μ−ζ )/T

(
T

2πμ

)3/2

[1 − e−R2μT/2] (104)

and the formulae of appendix B show that the characteristic reduction time tR for approach to
the asymptotic value of (104) is the inverse temperature T −1.

To compare this to the standard CSL model formulae, let us look at the decay of the off-
diagonal density matrix element of a one-particle system of mass equal to the nucleon mass

17



J. Phys. A: Math. Theor. 41 (2008) 395308 S L Adler and A Bassi

mN , which we have seen is governed by the same rate function 	 as state vector reduction.
From (16) and (19), at large times one has

〈�r1|ρ(t = ∞)|�r2〉 = e−	(∞)〈�r1|ρ(0)|�r2〉, (105)

with

	(t = ∞) = 2γm2
N [I (�0,∞) − I (�r1 − �r2,∞)]

= 2γm2
N e−(μ−ζ )/T

(
T

2πμ

)3/2

[1 − e−R2μT/2], (106)

where we have written R = |�r1 − �r2|. The comparable formula in the CSL model is given in
(8.15) of [9],

〈�r1|ρ(t)|�r2〉 = e−	CSL(t)〈�r1|ρ(0)|�r2〉, (107)

where 	CSL(t) is given by

	CSL(t) = tγ CSL

(
1

4πr2
c

)3/2

[1 − e−R2/(4r2
c )], (108)

and where (as remarked above in a footnote) γ CSL is what we call γm2
N . We see that the

functional form of the R-dependence in (104) and (108) is the same, with the CSL model
correlation length rC related to the nonrelativistic thermal model parameters by

r2
C = 1

2μT
,

(
T

2πμ

)3/2

= μ−3

(
1

4πr2
C

)3/2

. (109)

However, whereas 	CSL(t) grows linearly with time for large times t, in the thermal noise
model 	(t = ∞) approaches a constant. This means that to achieve the degree of density
matrix diagonalization, or state vector reduction, attained in the CSL model in time �t , the
parameters in the thermal model must obey

�tγ CSL = 2γm2
N

μ3
e−(μ−ζ )/T . (110)

6.4. Can thermalized dark matter be the noise source?

As we have already noted, one motivation for studying non-white noise is to investigate
whether there can be a cosmological origin for the noise that drives state vector reduction in
objective reduction models. Since there is now strong evidence that about a quarter of the
closure density of the universe consists of dark matter, and since weakly interacting massive
particle (WIMP) candidates for dark matter are expected to be thermalized, it is natural to
apply the results of the preceding section to an analysis of whether dark matter can account for
the noise coupling in (6). We will not attempt to discuss here the necessary conditions for dark
matter to give a real-valued, as opposed to an imaginary-valued, noise term in the Schrödinger
equation; this important question will be deferred to future work. What we shall do in this
section is to assume that a real-valued noise coupling can be achieved, and to investigate
the phenomenological implications of assuming that state vector reduction is associated with
observed dark matter parameters.

A few basic facts about dark matter are needed. If dark matter is due to WIMPs, then
observational evidence [12] suggests a WIMP distribution in the galactic halo of mass density
ρmass = 0.3 GeV cm−3, and a Maxwellian velocity distribution with vrms = 220 km s−1 =
7.3 × 10−4c. The rms velocity is estimated from the formula

μv2/rgalaxy = GMgalaxyμ
/
r2

galaxy, (111)

which describes the gravitational binding of WIMPs of mass μ to the galaxy of mass Mgalaxy, at
radius rgalaxy, with G the Newton gravitational constant. Direct limits on possible solar system-
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bound dark matter are weaker [13, 14] by a factor of 3 × 105, that is, ρmass ss � 0.9 × 105 GeV
cm−3. There is at present no observational limit on possible earth-bound dark matter. If there
were solar system-bound dark matter, around the radius of the earth’s orbit the rms velocity,
by (111) would be vrms ∼ 30 km s−1 = 10−4c, and for earth-bound dark matter, at the radius
of the earth’s surface, the rms velocity would be vrms ∼ 8 km s−1 = 0.27 × 10−4c.

Because the WIMP mass μ cancels out of (111), there is currently no direct information
about the dark matter particle mass. Dark matter particles coupling to the mass density cannot
be too light, or they would conflict with gravitational fifth force experiments. If we write the
noise coupling as

γ = 1

M2
, (112)

then the fifth force experiments require
exp(−μ/μ5)

M2
� 1

M2
Planck

, (113)

with μ5 the fifth force scale limit, currently [15] around μ5 ∼ 1.4 × 10−3 eV. This gives the
lower bound on M,

M � 1019−0.22μ/μ5 GeV. (114)

In addition to this constraint, there are also model-dependent astrophysical limits on the dark
matter mass; for example, warm dark matter candidates must have masses greater than 1 keV
[16].

For a Maxwellian distribution with N(�k) given by (100), the rms velocity is given by

v2
rms = 3T

μ
, (115)

so that using (109) we have

vrms =
√

3/2

μrC

. (116)

Hence for a given dark matter rms velocity, the correlation length rC and the dark matter
temperature T are determined as functions of the dark matter mass μ,

rC =
√

3/2

μvrms
, T = μv2

rms

3
. (117)

Integrating N(�k) over phase space, the number density ρn is given by

ρn ≡ ρm/μ =
∫

d3k

(2π)3
N(�k)

=
∫

d3k

(2π)3
e−(μ−ζ )/T e−�k2r2

C = e−(μ−ζ )/T

8π3/2r3
C

, (118)

which determines the factor containing the chemical potential ζ in terms of ρm, μ and rC ,

e−(μ−ζ )/T = ρm

μ
8π3/2r3

C. (119)

From these equations, together with (106) and (109), and the assumption that the lower
bound of (38) gives a good approximation to the reduction factor8, we get the following
estimate:

Reduction factor ∼ e−2	(t=∞), 2	(t = ∞) = 4
(mN

M

)2 ρm

μ4
n2N. (120)

8 Note, however, that although 	(t = ∞) is positive, the uniform positivity assumption on the integrand used to
derive the upper and lower bounds is not obeyed in the thermal model; see the formulae in appendix B. Also, the
simple model analyzed in appendix D gives exponential reduction as in the lower bound, but with a reduction factor
e−	(t=∞), and so the rates calculated from the lower bound may be optimistic by a factor of 2.
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Table 1. Correlation length rC (cm) versus μ (keV) and rms velocity v.

μ → 1 10 102 103 104 106

vh 3 × 10−5 3 × 10−6 3 × 10−7 3 × 10−8 3 × 10−9 3 × 10−11

vs 2 × 10−4 2 × 10−5 2 × 10−6 2 × 10−7 2 × 10−8 2 × 10−10

ve 9 × 10−4 9 × 10−5 9 × 10−6 9 × 10−7 9 × 10−8 9 × 10−10

Table 2. Reduction time tR (s) versus μ (keV) and rms velocity v.

μ → 1 10 102 103 104 106

vh 4 × 10−12 4 × 10−13 4 × 10−14 4 × 10−15 4 × 10−16 4 × 10−18

vs 2 × 10−10 2 × 10−11 2 × 10−12 2 × 10−13 2 × 10−14 2 × 10−16

ve 3 × 10−9 3 × 10−10 3 × 10−11 3 × 10−12 3 × 10−13 3 × 10−15

Here, in accordance with the properties of 	 discussed in section 2, n is the number of displaced
nucleons that are bunched within a correlation length rC and N is the number of such bunches
of displaced nucleons.

Using (117) and (120), we can now make some estimates of the effectiveness of thermal
dark matter in producing state vector reduction in the mass–density coupled model. Rewriting
(117) in the form

rC = 0.24 × 10−13

vrms

1 GeV

μ
cm, T −1 = tR = 0.2 × 10−23

v2
rms

1 GeV

μ
s, (121)

we get the following tables of values. For the correlation length rC in the body of the table in
cm, versus the dark matter mass μ in keV and its rms velocity appropriate to the galactic halo
(vh = 220 km s−1), solar system-bound dark matter (vs = 30 km s−1) and earth-bound dark
matter (ve = 8 km s−1), we have table 1.

Similarly, for the reduction time tR in seconds in the body of the table versus the dark
matter mass and its rms velocity, we have table 2.

Solving (120) for the value of γρm which yields 2	(t = ∞) = 1, which is the minimum
value of the exponent beyond which reduction of the state vector starts to occur, we get

γρm = 1.5 × 1013

n2N

( μ

1GeV

)2
GeV cm−1. (122)

From this, we get further tables of values. For γρm in the body of the table, in GeVcm−1,
versus the dark matter mass μ in keV, and the effective number of displaced nucleons
nout = n2N = 1022 corresponding [9] to the standard CSL model, or nout = n2N = 108

corresponding to estimates [8] based9 on latent image formation, we have table 3.
If we make the assumption that γ = 1(TeV)−2 = 10−6(GeV)−1, we get a table of values

giving ρm in the body of the table, in GeVcm−3, versus the dark matter mass and the effective
number nout of displaced nucleons (table 4).

From these tables, we see that state vector reduction, by the standard CSL criterion
(nout = 1022), and with a correlation length within a decade of the standard CSL value

9 In the CSL model, one assumes n = 109, which is the number of nucleons in a volume of linear dimension 10−5cm,
and N = 104, giving n2N = 1022. The latent image estimates of [8] take n = 5640 and N = 20, giving n2N ∼ 108.
The CSL model assumes a reduction rate of 107s−1, whereas the latent image estimates assume a much smaller
reduction rate of 30 s−1, which is why in a white noise model the ratio of the noise strengths between the two cases
is ∼109, rather than the ratio ∼1014 of the n2N values.
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Table 3. γρm (GeV cm−1) versus μ (keV) and nout.

μ → 1 10 102 103 104 106

1022 2 × 10−21 2 × 10−19 2 × 10−17 2 × 10−15 2 × 10−13 2 × 10−9

108 2 × 10−7 2 × 10−5 2 × 10−3 2 × 10−1 2 × 10 2 × 105

Table 4. ρm (GeV cm−3) versus μ (keV) and nout.

μ → 1 10 102 103 104 106

1022 3 3 × 104 3 × 108 3 × 1012 3 × 1016 3 × 1024

108 3 × 1014 3 × 1018 3 × 1022 3 × 1026 3 × 1030 3 × 1038

rC = 10−5cm, is achievable in the dark matter model for dark matter masses in the range of
1–10 keV, with γ ∼ 1 TeV−2 and with ρm below the current upper limit on solar system-bound
dark matter. Adopting the latent image criterion (nout = 108) requires dark matter densities
that are much too large, so either the latent image analysis of [8] needs modification, or the
dark matter model is unworkable.

For a dark matter mass μ of a kilovolt or greater, and the current limit on the fifth force
scale μ5, the fifth force bound of (113) becomes

M � 1019−0.15×106
, (123)

which is strongly obeyed for the M values in the GeV to TeV range that are interesting.
Referring to the discussion following (94), and using (95) and (117), we see that the function
f (
√

p2 − μ2) in the formula (87) for the radiated gamma power from a hydrogen atom
becomes

f (
√

p2 − μ2) = 1

e(p−ζ )/T − 1
� e−(μ−ζ )/T e−(p−μ)/T = ρm

μ
8π3/2r3

C e−3(p−μ)/(μv2
rms). (124)

Since for μ in the 1–10 keV range and for p = 11 keV, we have

3(p − μ)

μv2
rms

� 6 × 105, (125)

the negative exponential in the final factor of (124) dominates all other factors in this equation
and in (87), and so the experimental bound on 11 keV gamma radiation is strongly satisfied.

For both values of nout displayed in the tables, the reduction time is sufficiently rapid,
shorter than a few times 10−9 s, to account for realizable measurements. Finally, the total
energy imparted by the noise to an isolated nucleon is obtained by evaluating (85) by using
the form for f (k) in the dilute nonrelativistic thermal model, giving

Tr Hρ(t = ∞) = 3mNγρm

2r2
Cμ4

. (126)

For the CSL value of nout, this is smaller than 10−15 K for all values of the dark matter velocity
and mass in the tables, and so is sufficiently small so as to be unobservable.

The conclusion from this analysis is that, if dark matter couplings to ordinary matter have
the anti-self-adjoint component needed to give a real-valued noise term in the Schrödinger
equation, and if dark matter densities in the vicinity of earth are larger than the galactic halo
density, but within current limits on solar system-bound dark matter, one could realize the
standard CSL reduction model with the standard parameter values, and obey various important
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experimental constraints. The italicized assumptions make this mechanism for realizing state
vector reduction conjectural; at worst, we have given an interesting toy model for reduction
incorporating a non-white noise with a mass-shell constraint.

6.5. Thermal unparticles as the noise source

Recently Georgi [23] has introduced the concept of what he terms an ‘unparticle’, a field
characterizing a scale-invariant sector of a low-energy effective field theory. This is of interest
for collapse models, since if the noise field of (6) is the low-energy manifestation of a pre-
quantum dynamics, such as discussed in the book [10], it is plausible that it could have a
scale-invariant structure. Moreover, such an unparticle field, if a cosmological relic field, will
have a thermal correlation structure. The concept of thermal unparticles has been introduced
in a recent paper of Chen et al [24], who construct the thermal unparticle partition function
by using the observation of Krasnikov [25], that an unparticle field can be constructed as a
field with a continuous distribution of mass μ2, characterized by a scale-invariant spectral
function ρ(μ2) ∝ (μ2)d−2. More specifically, one obtains the unparticle propagator and
partition function by integrating the corresponding propagator and partition function for a
scalar field of squared mass μ2 over the range 0 � μ2 � ∞, with weighting function
ρ(μ2) = (d − 1)�2(1−d)(μ2)d−2. Here d is the anomalous scaling dimension characterizing
unparticle physics, and � is a scale parameter (the cutoff for the low-energy effective theory)
with dimension of mass10.

In appendix E, we use the same method to construct the unparticle thermal correlation
function from the thermal correlation function of (94) and (95) for a scalar field of mass
μ2. From this correlation function, we calculate the integrals needed to study both the state
vector reduction rate and the noise-induced energy production. We recapitulate here two key
formulae obtained from appendix E, both of which apply to a one-particle system of mass m.
For the decay rate 	(t) of the off-diagonal matrix element 〈�x|ρ(t)|�0〉, which we have seen is
also the reduction rate, we have

	(t) = 2γm2[IU (�0, t) − IU (�x, t)]

= γm2�2(1−d)

π2

∫ ∞

0
dω

ω2d−3[1 − cos(ωt)]

e
ω−ζ

T − 1

×
∫ 1

0
dv[1 − cos(vω|�x|)](1 − v2)d−1, (127)

where the subscript U on I corresponds to the notation of (E.16) of appendix E. For the noise-
induced energy acquisition rate and total energy acquired by a particle of mass m, we have
from (E.20) and (E.21) of appendix E,

d

dt
Tr Hρ(t) = 3γm�2(1−d)

(2π)2

	(3/2)	(d)

	(3/2 + d)

∫ ∞

0
dω

ω2d sin(ωt)

e
ω−ζ

T − 1
, (128)

and

Tr Hρ(t) − Tr Hρ(0) = 3γm�2(1−d)

(2π)2

	(3/2)	(d)

	(3/2 + d)

∫ ∞

0
dω

ω2d−1[1 − cos(ωt)]

e
ω−ζ

T − 1
. (129)

Turning our attention first to (127), we note that the inner integral over v is always
convergent at v = 0, and is convergent at v = 1 for Re d > 0. Because the inner integral

10 Strictly speaking, the integration over μ2 should extend only up to �2, but when the temperature T � �, the
integration for the partition function and thermal correlation function is effectively cut off by N(�k) of (95), and so
negligible error is made in extending the upper limit to ∞.
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in (127) vanishes as ω2 for small ω, the integral over ω in (127) has precisely the same
convergence properties at ω = 0 as the integral giving the total energy production in (129).
To study convergence, there are two cases to consider, (i) the chemical potential ζ is negative
and nonzero and (ii) the chemical potential ζ is zero11.

In the first case, of strictly negative ζ , the denominator e
ω−ζ

T − 1 is nonzero even at ω = 0,
and the integrals of (127) and (129) converge at ω = 0 even when the factor 1 − cos(ωt) is
replaced by unity, as long as Re d > 0. So in this case we can extract the infinite time limit
by invoking the Riemann–Lebesgue theorem, and simply dropping the term cos(ωt) in (127)
and (129), giving the formulae

	(∞) = γm2�2(1−d)

π2

∫ ∞

0
dω

ω2d−3

e
ω−ζ

T − 1

∫ 1

0
dv[1 − cos(vω|�x|)](1 − v2)d−1 (130)

and

Tr Hρ(∞) − Tr Hρ(0) = 3γm�2(1−d)

(2π)2

	(3/2)	(d)

	(3/2 + d)

∫ ∞

0
dω

ω2d−1

e
ω−ζ

T − 1
. (131)

Corresponding to the fact that the total energy production is finite, the energy production rate
of (128) vanishes at large time. Referring now to (130), we see that there are two subcases
governing the large |�x| behavior, which we call (ia) and (ib). In subcase (ia), corresponding
to Re d > 1, the ω integral is convergent without using the ω2 factor arising from the inner
integral. So in this subcase we can apply the Riemann–Lebesgue theorem to the inner integral
in the limit of large |�x|, by dropping the term cos(vω|�x|), leading to the conclusion that
	(∞) varies from 0 at |�x| = 0 to a finite value at |�x| = ∞. In subcase (ib), corresponding
to 1 � Re d > 0, the ω2 factor from the inner integral is needed for convergence, and on
changing integration variable from ω to u = ω|�x| one sees that 	(∞) grows as |�x|2(1−d) as
|�x| → ∞.

In the second case, of vanishing chemical potential ζ , the denominator e
ω−ζ

T − 1 vanishes
at ω = 0, and the integrals of (127) and (129) now behave for small ω as

	(t) ∼ γm2T �2(1−d)

π2

∫
0

dω ω2d−4[1 − cos(ωt)]
∫ 1

0
dv[1 − cos(vω|�x|)](1 − v2)d−1 (132)

and

Tr Hρ(t) − Tr Hρ(0) ∼ 3γmT �2(1−d)

(2π)2

	(3/2)	(d)

	(3/2 + d)

∫
0

dω ω2d−2[1 − cos(ωt)]. (133)

There are now two subcases, which we label (iia) and (iib). In subcase (iia) we have d > 1/2,
and both integrals (132) and (133) converge at ω = 0 without using the ω2 factor that comes
from 1−cos(ωt). So in this case, which behaves much like case (i), we can apply the Riemann–
Lebesgue theorem to take the limit as t → ∞ by dropping the term cos(ωt), leading to finite
values for 	(∞) and Tr Hρ(∞) − Tr Hρ(0). One can then proceed to analyze the large |�x|
behavior of 	(∞), as was done previously in case (i), with the conclusion that this is finite for
d > 3/2 and it behaves as |�x|3−2d for 3/2 � d > 0. In subcase (iib), we have 1/2 � d > 0,
and the ω2 coming from the factor 1 − cos(ωt) is needed for convergence; defining a new
integration variable u = ωt , we see that both 	(t) and Tr Hρ(t) grow as t1−2d in the large
t limit, and correspondingly, the energy production rate decreases as t−2d . So for vanishing
chemical potential, and 1/2 > d > 0, we have the interesting situation that one achieves
perfect reduction at infinite time (that is, 	(∞) = ∞), although the reduction rate and the

11 The chemical potential must always be less than or equal to zero, so there is not a third case of positive ζ , which

would correspond to a physical region pole in the integrands coming from the vanishing of the denominator e
ω−ζ
T − 1

in all three integrals.
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total energy production both grow as a fractional power of t, rather than linearly with t as in
the standard CSL model. Correspondingly, the energy production rate vanishes as a fractional
power of t at large time, which should make it easy to satisfy cosmological constraints [8] on
the noise strength parameter.

We conclude that the thermal unparticle model exhibits a range of interesting behaviors,
depending on the values of the chemical potential ζ and the unparticle dimension d. In addition
to these two parameters, the effective noise strength γ�2(1−d) and the temperature T are also
parameters of the model. Given the complexities of this four-dimensional parameter space,
we do not attempt phenomenological fits of the model to experimental constraints on the noise
strength, but this is clearly an interesting topic for future investigation.

7. Summary and discussion

We now summarize what has been done in the preceding sections and what is in the appendices,
and sketch some directions for extensions of our investigations. In sections 1–5 we have
continued the study of non-white noise models initiated in (I), focusing on the special case
in which the noise field couples to the particle density. The analyses of sections 2, 3 and
appendix D identify the characteristic rate functions governing density matrix diagonalization
and state vector reduction, and show that both processes are exponential with the same rate
function, in the simplified case (a single particle in a superposition of two localized states)
discussed in appendix D. In section 4, we completed our formal analysis for non-white noise
by deriving the corresponding Fokker–Planck equation, allowing us to make contact with
earlier work of Pearle [5]. In section 5, with an eye toward phenomenological applications,
we analyzed energy production and gamma radiation by atoms in terms of the correlation
functions of the non-white noise model.

In section 6, we turned to a discussion of specific models for the noise correlation function.
After a brief discussion of the product correlator model that has been the basis of most
earlier work on objective state vector reduction, we turned to a detailed analysis of a thermal
correlation function model, in which the spatial and temporal correlations are linked by a
mass-shell constraint. We showed that the dilute, nonrelativistic limit of the thermal correlator
model can be put in direct correspondence with the formulae of the standard Gaussian CSL
model. We then gave a detailed phenomenological analysis of thermal dark matter as the noise
source, and concluded section 6 with a discussion of the behavior of thermal unparticles as the
noise source, sketching qualitative behaviors for a range of values of the chemical potential
and of the unparticle anomalous scaling dimension. The examples given included cases in
which 	(t) and the energy production both are finite at t = ∞, and in which 	(t) and the
energy production both grow as a fractional power smaller than unity as t → ∞.

The appendices deal with various details connected with the main discussion. In
appendix A, we estimate the validity of the Markovian approximation used in the energy
production discussion, while in appendix B we compare the master equation used in
our discussion with a more general class of master equations appearing in the literature.
Appendix C gives the evaluation of integrals for the dilute, nonrelativistic model, while
appendix E gives details of the unparticle correlation functions. Appendix D shows that, in
a simple model, reduction is exponential in the rate function 	(t), indicating that the lower
bound derived in section 3, as opposed to the upper bound derived there, gives the better
estimate of the qualitative reduction behavior.

We can point to a number of possible directions for generalization or extension of
the results of this paper. (i) We have considered only the case of a real noise coupling,
corresponding to an anti-self-adjoint Hamiltonian term. More generally, one could consider
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a complex noise coupling, containing both real and imaginary noise couplings, with the real
term contributing both to density matrix diagonalization (i.e., decoherence) and to state vector
reduction, and the imaginary part contributing only to decoherence. (ii) For simplicity, we
have only considered a scalar noise field φ, but a general treatment of non-white noises would
allow for the possibility of spin-1/2 or spin-1 noise fields. Such an extension may ultimately
be required on phenomenological grounds to make contact with experiment. (iii) Although
we sketched the qualitative behavior of the thermal unparticle case, we did not attempt to
make a quantitative phenomenological survey of the four-dimensional parameter space of this
model, and this would be of interest. (iv) The derivation of lower and upper bounds on the
reduction rate in section 3 made use of a positivity assumption, which is not obeyed in the
thermal correlator model; can this assumption be eliminated? (v) The model calculation of
appendix D indicated an exponential dependence of the reduction factor on 	, agreeing with
the corresponding density matrix diagonalization calculation but differing by a factor of 2 in
the exponent from the corresponding lower bound of section 3. Can this result be generalized
to the case of many particles and a wavefunction that is the superposition of many localized
states as in (31)? Clearly, a general argument that the reduction factor has exponential rather
than power-law dependence on 	 would be significant for the phenomenology of objective
reduction models. (vi) In section 6.2 we formulated our thermal model for the correlation
function, by neglecting the temperature-independent Greens function �+, which reflects the
non-commutativity of creation and annihilation operators. As noted, this gives an effectively
classical model for the thermal noise. It would be worth exploring a fully quantum-mechanical
treatment of state vector reduction by a thermal noise field, in which all parts of the quantum-
mechanical correlation function (92) are retained.
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Appendix A. Markovian approximation

One can estimate the validity of the Markovian approximation by considering the case of a
single free particle of mass m, so that H = p2/(2m). Then we easily calculate that

M(�y, s − t) = mδ3(�y − eiH(s−t)�q e−iH(s−t)) = mδ3(�y − �q − (�p/m)(s − t)), (A.1)

so that repeating the steps leading to (83) we find

d

dt
Tr ρ(t)H = γm

∫ t

0
ds

∫
d3k

(2π)3

f (k)

ωk

cos(ωk(t − s))TrO(s − t), (A.2)

with O(s − t) given by

O(s − t) = − 1
2 [e−i�k·(�q+(�p/m)(s−t)), [ei�k·�q, �p2]]. (A.3)

This expression can be simplified by the use of the Baker–Hausdorff theorem and the canonical
commutation relations, giving after considerable algebra, and dropping terms that are odd

25



J. Phys. A: Math. Theor. 41 (2008) 395308 S L Adler and A Bassi

in �k,

O(s − t) = k2 cos

( �k · �p
m

(s − t)

)
cos

(
k2

2m
(s − t)

)

− 2�p · �k sin

( �k · �p
m

(s − t)

)
sin

(
k2

2m
(s − t)

)
. (A.4)

We see that all dependence of O(s − t) on s − t is through oscillatory terms. Assuming that
the characteristic spatial variation scale of the problem is governed by ωk ∼ |�k| ∼ |�p| ∼ kmax,
with kmax the characteristic k-value at which f (k) cuts off, then when the particle mass m is
large enough for the kinetic energy at kmax to obey

k2
max

2m
� kmax, (A.5)

the variation of O(s − t) with s is much slower than that of the cosine factor in (A.2). In this
case the integral in (A.2) is well approximated by replacing O(s − t) by O(0) = k2, which
recovers the result of the Markovian approximation made in section 5.

Appendix B. Comparison with master equations for decoherence

A further understanding of the effect of the thermal field φ(�x, t) on the evolution of the
wavefunction can be obtained by comparing (8) for the density matrix with typical master
equations used for describing open quantum systems. Here we will follow the path outlined
in [17], where a comparison of this kind has been made between the GRW model [18] and
collisional decoherence [19–21].

We consider the evolution of a single particle; under the Markovian approximation
(M(�y, s − t) = M(�y, 0) = M(�y)) discussed in section 5, (8) reads

d

dt
ρ(t) = −i[H, ρ(t)] + Lφ

t [ρ(t)], (B.1)

with

Lφ
t [ρ] = −γ

∫
d3x

∫
d3y[M(�x), [M(�y), ρ]]F(�x − �y, t), (B.2)

and M(�x) = mδ3(�x − �q). The term Lφ
t , which includes the effect of the thermal field φ(�x, t)

on ρ(t), is the one we will focus on. Let us introduce the Fourier transform

F(�x − �y, t) =
∫

d3k

(2π)3
F̂ (�k, t) ei�k·(�x−�y), (B.3)

with F̂ (�k, t) = F̂ (−�k, t) due to spatial inversion invariance. One can rewrite (B.2) in terms
of F̂ (�k, t) as follows:

Lφ
t [ρ] = 2m2γ

∫
d3k

(2π)3
F̂ (�k, t)[ei�k·�qρ e−i�k·�q − ρ]. (B.4)

The above expression falls into the general class of translational-invariant Markovian
master equations first given by Holevo [22] which, in the case of a bounded mapping L, reads

L[ρ] =
∫

dμ(�k)

∞∑
n=1

[
ei�k·�qLn(�k, �p)ρL†

n(
�k, �p) e−i�k·�q − 1

2
{L†

n(
�k, �p)Ln(�k, �p), ρ}

]
, (B.5)

where Ln(�k, �p) are bounded functions of the momentum operator �p and μ(�k) is a positive
σ -finite measure. Briefly, the physical content of (B.5) is the following: the unitary operators
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ei�k·�q and e−i�k·�q induce a momentum transfer to the particle by an amount equal to �k, while the
operators Ln(�k, �p) imply that the momentum transfer to the particle depends on the momentum
of the particle itself. This allows for mechanisms such as relaxation to take place.

Equation (B.5) reduces to (B.4) under the following circumstances. Let us assume that
Ln(�k, �p) = Ln(�k) does not depend on the momentum �p of the particle. They then become
c-number functions, commuting with all other operators. By setting

dμ(�k)

∞∑
n=1

|Ln(�k)|2 = 2m2γ
d3k

(2π)3
F̂ (�k, t), (B.6)

the link is established. Of course, in the truly Markovian case one has D(�x − �y, t − s) =
G(�x − �y)δ(t − s) so that F̂ (�k, t) = (1/2)Ĝ(�k) is independent of time, where Ĝ(�k) is the
Fourier transform of G(�x − �y).

According to the above analysis, the effect of the thermal field is not only that of localizing
the wavefunction in space (this is a consequence of the specific form of the stochastic equation
(13)), but also of exchanging momentum between the particle and the field. This is the reason
why both the momentum and the energy of the particle are not conserved, in general. One
would expect the energy of the particle to thermalize to that of the random field; however, the
model described by (13) does not allow for thermalization, since the operators Ln(�k) do not
depend on the momentum �p of the particle. This is in agreement with the results of section
5.1 on energy production. The comparison with decoherence suggests how the model can be
modified in order to include also such an effect; this will be a subject of future research.

Appendix C. Integrals in the dilute, nonrelativistic thermal model

From (103) we find∫ ∞

−∞

k2dk

(2π)2
e−k2/(2μT ) sin(kR)

kR
=
(

μT

2π

)3/2

e−(μT R2/2),

∫ ∞

−∞

k2 dk

(2π)2
e−k2/(2μT ) sin(kR)

kR
exp

(
i

(
μ +

k2

2μ

)
t

)

=
(

μT

2π

)3/2

(1 + t2T 2)−3/4 e−(μT R2/2)/(1+t2T 2)

× exp(i(μt + (3/2) tan−1(tT ) − (μtT 2R2/2)/(1 + t2T 2))), (C.1)

from which, by forming linear combinations, taking real and imaginary parts, and taking limits
as R = |�x| → 0, we get

D(�0, t) − D(�x, t) � e−(μ−ζ )/T

μ

(
μT

2π

)3/2

(1 + t2T 2)−3/4[cos(μt + (3/2) tan−1(tT ))

− e−(μT R2/2)/(1+t2T 2) cos(μt + (3/2) tan−1(tT ) − (μtT 2R2/2)/(1 + t2T 2))],

F (�0, t) − F(�x, t) � e−(μ−ζ )/T

μ2

(
μT

2π

)3/2

(1 + t2T 2)−3/4[sin(μt + (3/2) tan−1(tT ))

− e−(μT R2/2)/(1+t2T 2) sin(μt + (3/2) tan−1(tT ) − (μtT 2R2/2)/(1 + t2T 2))],

I (�0, t) − I (�x, t) � e−(μ−ζ )/T

μ3

(
μT

2π

)3/2

{1 − e−(μT R2/2)

− (1 + t2T 2)−3/4[cos(μt + (3/2) tan−1(tT )) − e−(μT R2/2)/(1+t2T 2)

× cos(μt + (3/2) tan−1(tT ) − (μtT 2R2/2)/(1 + t2T 2))]}. (C.2)
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Appendix D. Time evolution of the wavefunction and exponential decay of

superpositions

As mentioned in the introduction, an alternative form of the collapse equation has been given
in (I), which differs from (13) by a change of measure for the noise; see (35) and (37) of (I).
The advantage of this alternative formulation is that it can be expressed in terms of a linear,
but not norm preserving, equation (34) of (I), which is simpler to solve. Upon normalization
and change of measure, one recovers the usual collapse dynamics.

Let us specialize to the case of a single particle; let us moreover set H = 0, as we want to
focus only on the collapse mechanics. Then, for the mass density coupling considered in this
paper, the linear equation reads

d|χ(t)〉
dt

=
[√

γ

∫
d3x M(�x)φ(�x, t) − 2γ

∫
d3x

∫
d3y M(�x)M(�y)F (�x − �y, t)

]
|χ(t)〉.

(D.1)

The random field φ(�x, t) is now supposed to be a Gaussian thermal field with respect to a new
measure Q, having mean 0 and correlator D(�x − �y, t − s). The relation between the statistical
averages with respect to this measure and the averages with respect to the physical measure
used throughout this paper (which we shall call P from now on) is

EP[f (t)] = EQ[f (t)〈χ(t)|χ(t)〉], (D.2)

where f (t) is a generic random function of time.
Because of the special form (3) of the particle density operator M(�x), (D.1) can be readily

solved in the coordinate representation χ(�x, t) = 〈�x|χ(t)〉,
χ(�x, t) = exp[

√
γm�(�x, t) − 2γm2I (�0, t)]χ(�x, 0), (D.3)

with

�(�x, t) =
∫ t

0
dsφ(�x, s), I (�0, t) =

∫ t

0
dsF (�0, s) (D.4)

(I (�x, t) has been first introduced in (97).) Let us fix an arbitrary time t. Then the random field
�(�x, t) is a Gaussian field in the variable �x, with mean and correlator equal to

EQ[�(�x, t)] = 0, EQ[�(�x, t)�(�y, t)] = 2I (�x − �y, t). (D.5)

The above statistical properties refer to the measure Q, while we need them to be expressed
with respect to the physical measure P. Equation (D.2) allows us to switch between the two
measures, once the squared norm 〈χ(t)|χ(t)〉 has been computed.

In analogy with the discussion of section 3, let us consider an initial state of the form

χ(�x, 0) = α1δ
3(�x − �r1)1/2 + α2δ

3(�x − �r2)1/2, (D.6)

corresponding to the superposition of two states well localized around �r1 and �r2 respectively.
By substituting it into (D.3) and normalizing the wavefunction, one obtains for the collapse
probabilities

p1(t) = |α1(t)|2 = p1 e2
√

γm�(�r1,t)

p1 e2
√

γm�(�r1,t) + p2 e2
√

γm�(�r2,t)
,

(D.7)

p2(t) = |α1(t)|2 = p2 e2
√

γm�(�r2,t)

p1 e2
√

γm�(�r1,t) + p2 e2
√

γm�(�r2,t)
,
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with p1 = |α1|2 and p2 = |α2|2. Using (D.2), together with the equation

〈χ(t)|χ(t)〉 = p1 exp[2
√

γm�(�r1, t) − 4γm2I (�0, t)]

+p2 exp[2
√

γm�(�r2, t) − 4γm2I (�0, t)], (D.8)

we can compute the average of the product p1(t)p2(t).
Due to the statistical properties (D.5), the joint probability density of the two random

variables �(�r1, t) and �(�r2, t) reads

P
Q
12 = 1

2π
√

a2
t − b2

t

exp

[
−at (�(�r1, t))2 − 2atbt�(�r1, t)�(�r2, t) + at (�(�r2, t))2

2
(
a2

t − b2
t

)
]

, (D.9)

with at = 2I (�0, t) and bt = 2I (�r1 − �r2, t). Using now (D.2), (D.7), (D.8) and (D.9) we get

EP[p1(t)p2(t)] = p1p2 e−2γm2at
1

8πγm2at

√
1 − r2

t

∫ +∞

−∞
dx dy

exp
[− x2+y2−2rt xy

8γm2at (1−r2
t )

+ x + y
]

p1 ex + p2 ey
,

(D.10)

with rt = bt/at ; we have also relabeled x = 2
√

γm�(�r1, t) and y = 2
√

γm�(�r2, t).
Equation (D.10) can be further simplified by making the change of variables t = (x + y)/2,

s = (x − y)/2. In this case, the two integrals decouple and one gets

EP[p1(t)p2(t)] = p1p2 e−	(t) 1

2
√

π	(t)

∫ +∞

−∞
ds

e−s2/4	(t)

p1 es + p2 e−s
, (D.11)

where 	(t) = γm2at (1 − rt ) corresponds to definition (19). The final integral gives a finite
contribution as 	(t) → ∞, which proves that the decay of the superposition is exponential in
time, and proportional to e−	(t)/

√
	(t). In particular, by using the inequality

p1 es + p2 e−s � m(es + e−s) = 2m cosh s, (D.12)

with m ≡ min{p1, p2} (here we assume that m �= 0; the trivial case m = 0 can be treated
separately), one has∫ +∞

−∞
ds

e−s2/4	(t)

p1 es + p2 e−s
� 1

2m

∫ +∞

−∞
ds

1

cosh s
= π

2m
. (D.13)

Collecting all results, we can write

EP[p1(t)p2(t)] � EP[p1(0)p2(0)]

√
π

4m
√

	(t)
e−	(t). (D.14)

Appendix E. Unparticle thermal correlation functions

We take the unparticle thermal correlation function to be given by an average over thermal
correlation functions for particles of mass μ � 0, using the same weighting function ρ(μ2)

that is used [25] to generate the unparticle propagator from the propagator for a boson of mass
μ,

ρ(μ2) = (d − 1)�2(1−d)(μ2)d−2. (E.1)

Writing the left-hand side of (94) as D(�x, t, μ) so as to explicitly show the mass dependence,
the thermal unparticle correlation function DU is then given by

DU (�x, t) =
∫ ∞

0
dμ2ρ(μ2)D(�x, t, μ). (E.2)
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Substituting (94) and (95), we thus get

DU (�x, t) = (d − 1)�2(1−d)

∫ ∞

0
dμ2(μ2)d−2

∫
d3k

(2π)3ωk

1

e
ωk−ζ

T − 1
cos(�k · �x) cos(ωkt)

= (d − 1)�2(1−d)

∫
d3k

(2π)3
cos(�k · �x)

∫ ∞

0
dμ2(μ2)d−2 1

ωk

1

e
ωk−ζ

T − 1
cos(ωkt),

(E.3)

where in the second line we have isolated those factors of the integrand that explicitly depend
on μ. Since ω2

k = k2 + μ2, we can change integration variable in the inner integral from μ2 to
ω2

k , by using

dμ2 = 2ωkdωk, (μ2)d−2 = (ω2
k − k2)d−2

, (E.4)

which gives∫ ∞

0
dμ2(μ2)d−2 1

ωk

1

e
ωk−ζ

T − 1
cos(ωkt) = 2

∫ ∞

k

dω
(ω2 − k2)d−2

e
ω−ζ

T − 1
cos(ωt), (E.5)

where we have relabeled the dummy integration variable ωk as ω. Substituting this into (E.3)
we get

DU (�x, t) = 2(d − 1)�2(1−d)

∫
d3k

(2π)3
cos(�k · �x)

∫ ∞

k

dω
(ω2 − k2)d−2

e
ω−ζ

T − 1
cos(ωt). (E.6)

Corresponding to this formula, the function FU (�x, t) introduced in (11) is given by

FU (�x, t) =
∫ t

0
dsDU (�x, t − s)

= 2(d − 1)�2(1−d)

∫
d3k

(2π)3
cos(�k · �x)

∫ ∞

k

dω

ω

(ω2 − k2)d−2

e
ω−ζ

T − 1
sin(ωt), (E.7)

and the integral appearing in the rate function 	(t) of (17) is given by

IU (�x, t) ≡
∫ t

0
dsFU (�x, s)

= 2(d − 1)�2(1−d)

∫
d3k

(2π)3
cos(�k · �x)

∫ ∞

k

dω

ω2

(ω2 − k2)d−2

e
ω−ζ

T − 1
[1 − cos(ωt)]. (E.8)

From (E.7) we can read off the Fourier transform defined in (70), from which the energy
production is calculated through (71),

F̂U (�k, t) = 2(d − 1)�2(1−d)

∫ ∞

k

dω

ω

(ω2 − k2)d−2

e
ω−ζ

T − 1
sin(ωt). (E.9)

Note that in all of these formulae, the scale parameter � appears as an overall factor, which
then combines with the noise coupling γ to give a new effective coupling γ�2(1−d).

The correlation function DU (�x, t) can be written in several alternative forms. Performing
the angular average over �k, we get

DU (�x, t) = (d − 1)�2(1−d)

∫ ∞

0

dk k

π2|�x| sin(k|�x|)
∫ ∞

k

dω
(ω2 − k2)d−2

e
ω−ζ

T − 1
cos(ωt), (E.10)

which on interchange of orders of the k and ω integrations becomes

DU (�x, t) = (d − 1)�2(1−d)

∫ ∞

0
dω

cos(ωt)

e
ω−ζ

T − 1

∫ ω

0

dk k

π2|�x| sin(k|�x|)(ω2 − k2)d−2. (E.11)

30



J. Phys. A: Math. Theor. 41 (2008) 395308 S L Adler and A Bassi

Making the change of integration variable k = ωv, this can be further rewritten as

DU (�x, t) = (d − 1)�2(1−d)

∫ ∞

0
dω

ω2(d−1) cos(ωt)

e
ω−ζ

T − 1

∫ 1

0

dv v

π2|�x| sin(vω|�x|)(1 − v2)d−2. (E.12)

The integral over v in (E.12) converges only for Re d > 1. However, by an integration by
parts this integral is transformed as follows:∫ 1

0

dvv

π2|�x| sin(vω|�x|)(1 − v2)d−2 =
∫ 1

0

dv ω

2π2(d − 1)
cos(vω|�x|)(1 − v2)d−1, (E.13)

which gives an analytic continuation around the simple pole at d = 1, expressed in terms of
a v integral that now converges for Re d > 0. Substituting (E.13) into (E.12) gives a formula
for the correlation function which is now manifestly finite for Re d > 0,

DU (�x, t) = 1

2
�2(1−d)

∫ ∞

0
dω

ω2d−1 cos(ωt)

e
ω−ζ

T − 1

∫ 1

0

dv

π2
cos(vω|�x|)(1 − v2)d−1. (E.14)

The corresponding formulae for FU (�x, t) and IU (�x, t) are now obtained by the replacement of
cos(ωt) by sin(ωt)/ω and [1 − cos(ωt)]/ω2, respectively,

FU (�x, t) = 1

2
�2(1−d)

∫ ∞

0
dω

ω2d−2 sin(ωt)

e
ω−ζ

T − 1

∫ 1

0

dv

π2
cos(vω|�x|)(1 − v2)d−1 (E.15)

and

IU (�x, t) = 1

2
�2(1−d)

∫ ∞

0
dω

ω2d−3[1 − cos(ωt)]

e
ω−ζ

T − 1

∫ 1

0

dv

π2
cos(vω|�x|)(1 − v2)d−1. (E.16)

From (E.16) we find for the subtracted integral that enters into 	(t),

IU (�0, t) − IU (�x, t) = 1

2
�2(1−d)

∫ ∞

0
dω

ω2d−3[1 − cos(ωt)]

e
ω−ζ

T − 1

×
∫ 1

0

dv

π2
[1 − cos(vω|�x|)](1 − v2)d−1, (E.17)

giving an expression that is manifestly positive.
Let us now return to (E.9), and use it to calculate the energy production. Substituting

(E.9) into (71) we get, for a single particle with mass-coupled unparticle noise,

d

dt
Tr Hρ(t) = γm�2(1−d)(d − 1)

π2

∫ ∞

0
dk k4

∫ ∞

k

dω

ω

(ω2 − k2)d−2

e
ω−ζ

T − 1
sin(ωt), (E.18)

which on interchanging the orders of the k and ω integrations becomes

d

dt
Tr Hρ(t) = γm�2(1−d)(d − 1)

π2

∫ ∞

0

dω

ω

sin(ωt)

e
ω−ζ

T − 1

∫ ω

0
dk k4(ω2 − k2)d−2. (E.19)

Making the change of variable k = ωu1/2, dk = (1/2)ωu−1/2du in the inner integral, it can be
evaluated in terms of the Euler B function; then using (d − 1)	(d − 1) = 	(d) one gets the
compact expression

d

dt
Tr Hρ(t) = 3γm�2(1−d)

(2π)2

	(3/2)	(d)

	(3/2 + d)

∫ ∞

0
dω

ω2d sin(ωt)

e
ω−ζ

T − 1
, (E.20)

with the integral convergent for Re d > 0. Integrating over t, one gets the corresponding
formula for the total energy production

Tr Hρ(t) − Tr Hρ(0) = 3γm�2(1−d)

(2π)2

	(3/2)	(d)

	(3/2 + d)

∫ ∞

0
dω

ω2d−1[1 − cos(ωt)]

e
ω−ζ

T − 1
. (E.21)
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